Fast multipole method for the biharmonic equation in three dimensions
نویسندگان
چکیده
The evaluation of sums (matrix–vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering the translation of a pair of elementary solutions of the Laplace equations. The extension of the theory to the case of polyharmonic equations in R is also discussed. An efficient way of performing the FMM for biharmonic equations using the solution of a complex valued FMM for the Laplace equation is presented. Compared to previous methods presented for the biharmonic equation our method appears more efficient. The theory is implemented and numerical tests presented that demonstrate the performance of the method for varying problem sizes and accuracy requirements. In our implementation, the FMM for the biharmonic equation is faster than direct matrix–vector product for a matrix size of 550 for a relative L2 accuracy 2 = 10 , and N = 3550 for 2 = 10 . 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Fast Multipole Method for the Biharmonic Equation
The evaluation of sums (matrix-vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering ...
متن کاملA wideband fast multipole method for the Helmholtz equation in three dimensions
We describe a wideband version of the Fast Multipole Method for the Helmholtz equation in three dimensions. It unifies previously existing versions of the FMM for high and low frequencies into an algorithm which is accurate and efficient for any frequency, having a CPU time of O(N) if low-frequency computations dominate, or O(N logN) if high-frequency computations dominate. The performance of t...
متن کاملSecond kind integral equations for the first kind Dirichlet problem of the biharmonic equation in three dimensions
A Fredholm second kind integral equation (SKIE) formulation is constructed for the Dirichlet problem of the biharmonic equation in three dimensions. A fast numerical algorithm is developed based on the constructed SKIE. Its performance is illustrated via several numerical examples.
متن کاملA fast multipole boundary element method for solving the thin plate bending problem
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex not...
متن کاملRemarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions
This paper describes a simple version of the Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. We discuss both the underlying theory and some of the practical aspects of its implementation to allow for stability and high accuracy at all wavelengths.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 215 شماره
صفحات -
تاریخ انتشار 2006